Schematical layout of IBR-2 experimental facilities

Spectrometer
Diffractometer on ideal crystals "DIFRAN"
Direct geometry spectrometer "DIN-2"
Ultracold neutrons channel "UCN"
Small angle scattering diffractometer "MURN"
High resolution Fourier diffractometer
and powder diffractometer for time-resolved studies "DN-5"
Single crystal diffractometer "DN-2"
Single crystal diffractometer with pulsed magnetic field "SNIM"
Texture diffractometer "NSVR"
High resolution inverted geometry spectrometer "NERA"
Polarized neutron spectrometer "SPN"
Neutron reflectometer (project) "REFLEX"
Inverted geometry spectrometer "KDSOG"
Test beams

Neutron Spectrometers at IBR-2 Reactor

Spectrometer	Beam No.	Applications	Thermal neutron flux on the sample	Resolution range
DIFFRACTO	METERS			
"MURN"	4	Small angle scattering diffractometer. Structure of inhomogeneous systems, macromolecules, alloys, range 10-1000Å.	$(0.6-3.7)\times10^7$	0.007≤Q≤0.7Å ΔQ/Q=0.04-0.18
"DN-5" (project to be put into operation in 1992)	5	a) High resolution Fourier diffractometer for powders (HRFD). "Ab initio" studies of low symmetry structures.	107	λ =0.9-12Å Δ d/d=5x10 ⁻⁴ Å at d=2Å
1002)		b)Powder diffractometer for time-resolved studies. Transition phenomena in solids with temporal resolution ca. 1 sec (300 µsec with a special detector assembly).	5×10 ⁷	λ =0.9-12Å $\Delta\lambda$ =0.04Å
"DN-2"	6A	Single crystal diffractometer. Atomic structures, phase transitions, etc. Temperature range 5-1000K. Real time diffraction with temporal resolution ca.1 min.	107	λ =1.2-20Å $\Delta\lambda$ =0.05Å $\Delta d/d$ =0.01, for Θ =80°, d=2Å $\Delta d/d$ =0.1, for Θ =10°, d=60Å
"SNIM"	6B	Single crystal diffractometer. The pulsed (1ms) magnetic field on the sample is up to H=25T. Magnetic structures and phase transitions.	4×10 ⁶	λ =0.8-20Å $\Delta\lambda$ =0.04Å
"NSVR"	7 A	Texture diffractometer. Texture analysis of metals, minerals and ceramics. Short range order studies in glasses and liquids.	10 ⁶	λ =0.8-7.6Å $\Delta\lambda$ =0.015Å

INELASTIC SCATTERING SPECTROMETERS

Direct geometry spect-

rometer, a reactor-

2

"DIN-2"

		rometer, a reactor- phased chopper with curved slits, a sample area up to 200 cm ² . Atomic dynamics of me- tals, alloys and liquids.		$\Delta E_{o}/E_{o}$ =4-10%
"NERA"	7B	High resolution inverted geometry spectrometer. Stochastic motion of atoms and molecules. Atomic and magnetic dynamics, phase transitions.	4.6×10 ⁶	δE =0-500meV $\Delta E/E$ =2-6% (inelastic) ΔE =40-600 μ eV (quasielastic)
"KDSOG"	10	Inverted geometry spectrometer. A sample of up to 200cm ² in area, 5-500K, 0-4kbar. Atomic and magnetic dynamics.	6.6×10 ⁶	δE =1-300meV $\Delta E/E$ =5-14%
SPECIAL SI	PECTR	COMETERS		
"DIFRAN"	1	Diffractometer on ideal crystals Neutron interferometry, coherent lengths.	1.9×10 ⁶	λ =0.2-4Å $\Delta\lambda$ =0.04Å
"UCN"	3	Investigations with ultracold neutrons of the surface properties of magnetic and non-magnetic materials.	400 n/s	Range λ =700-2500Å
"SPN"	8	Polarized neutrons spectrometer (p≥94%). Magnetic field on a sample is up to 6000 Oe. Study of surface phenomena, internal fields and inhomogeneities in magnetic and superconducting materials.	2.5×10 ⁵	$\Delta \lambda$ =0.03Å λ =0.8-10Å
"REFLEX" (project)	9	Neutron reflectometer. Surface and interfacial phenomena studies by polarized and unpolarized neutron specular reflection me neutron flux (n/cm ² /sec) (co	2.5×10 ⁵	λ =0.5-15Å $\Theta_{grazing}$ =(2-12)×10 ⁻³ rad $\Delta\Theta$ =2×10 ⁻⁴ rad

 2.5×10^{5}

 $\delta E=0.5-120 \text{meV}$

 $\Delta E_{\circ}/E_{\circ}=4-10\%$

Notes: 1) The average over time neutron flux (n/cm² /sec) (column 4) was measured by activation of a golden foil, which replaced the sample.

²⁾ Accepted notations: λ is the neutron wavelength; Q is the scattering vector length ($\mathbf{Q} = \mathbf{k} - \mathbf{k}_0$); Δ - the resolution of spectrometer over the corresponding parameter; \mathbf{E}_0 and \mathbf{E} the energy of the neutron before and after scattering, respectively; $\delta \mathbf{E}$ is the neutron energy change per scattering event.