Дифракция нейтронов на DNS-IV

- Разнообразие нейтронных спектрометров (дифрактометров)
- Дифракция нейтронов на ИБР-2
- * ТОГ-дифрактометры на ISIS, SNS, J-SNS, ESS
- Тенденции развития ТОГ-дифрактометров
- Дифрактометры на DNS-IV: базовый набор и перспективы

©2018, A.M.Balagurov bala@nf.jinr.ru

Специализация нейтронных дифрактометров

 I. Эксперимент с монокристаллом

 2D ПЧД, $\Delta x < 3 \text{ мм} \rightarrow 4\pi$ ПЧД

II. Структурный эксперимент на поликристалле высокое разрешение, *∆d/d* ≈ 0.002, широкоапертурный ПЧД

III. Магнитная структура (моно- или поликристалл) среднее разрешение, большие (~15 Å) d_{hkl}

IV. In Situ, Real Time эксперимент высокая светосила (~10⁶ н/с), широкий интервал d_{hkl}

V. Высокое давление, микрообразцы высокая светосила, низкий фон

VI. Длиннопериодные и макромолекулярные структуры среднее разрешение, очень большие (~60 Å) d_{hkl}

VII. Локальные искажения структуры большие переданные импульсы, Q_{max} ~ 40 Å⁻¹

VIII. Микроструктура материалов и изделий (напряжения, текстура) высокое разрешение, ∆d/d ≈ 0.004, высокая светосила

2

Neutron sources for condensed matter studies

Pulsed neutron sources

Source	Year	W, MW	<Φ ₀ >, 10 ¹³	$\Delta t_0, \mu s$	v, Hz	Diffract.
ISIS	1985	0.2	0.07	20	50	7
LANSCE	1985	0.1	0.05	20 20		2
CSNS	2018	0.1	0.05	20	20 25	
SNS	2006	1	1	20	60	6
J-SNS	2009	1	1	20 25		6
IBR-2	1984	2	0.8	320 5		7
ESS	2019	5	30	2860 14		5
NEPTUN	2035	10	50	20 / 200	20 / 200 10	

TOF-diffractometers at pulsed neutron sources (33 instruments)

I. ISIS (7)

ENGIN-X – engineering GEM – powder, HR + HI HRPD – powder, HR PEARL – high-pressure POLARIS – powder, HI SXD – single-crystal WISH – magnetic

II. SNS (6)

MANDI – macromolecular NOMAD – nanoscale POWGEN – powder, HR, HR + HI SNAP – high-pressure TOPAZ – single-crystal VULCAN – engineering

III. LANSCE (2) HIPPO – engineering SMARTS – high-pressure

IV. J-PARC (6)

iBIX - macromolecular iMATERIA - powder, HR + HI PLANET – high-pressure SENJU - single-crystal sHRPD – powder, HR TAKUMI - engineering

V. IBR-2 (7) DN-6 – high-pressure DN-12 – high-pressure FSD – engineering HRFD - powder, HR, HR + HI RTD - powder, HI EPSILON – stress SKAT - texture

VI. ESS (5) DREAM – powder, HR, HR + HI HEIMDAL - hybrid MAGiG – polarized, single crystal NMX – macromolecular BEER – engineering

TOF-diffractometers at 6 pulsed neutron sources

Spectrometers at the IBR-2 reactor

Diffraction at the IBR-2M

- **1. HRFD*** powders atomic and magnetic structure
- 2. **RTD** powders, single crystals real-time, *in situ*
- 3. DN-6 microsamples high-pressure
- 4. Epsilon** rocks, bulk samples internal stresses
- 5. SKAT** rocks, bulk samples textures
- 6. FSD* bulk samples engineering
- 7. DN-12 microsamples high-pressure
- 8. FSS* bulk samples internal stresses (setting-up)
 - * Fourier RTOF technique
 - ** Long (~100 m) flight pass

Diffraction at the IBR-2: Resolution

Resolution of a TOF neutron diffractometer

 $(\Delta d/d)^2 = (\Delta t_0/t)^2 + (\Delta \theta/tg\theta)^2, \qquad t \approx 250 \cdot L \cdot \lambda \approx 500 \cdot L \cdot d \cdot \sin\theta$ 1) $\Delta t_0 \sim \lambda \text{ (SNS)} \rightarrow \qquad R_t(d) \approx \text{Const}$ 2) $\Delta t_0 \approx \text{Const} \text{ (Fourier, ESS)} \rightarrow R_t(d) \sim 1/d$

TOF-diffractometers at the SNS pulsed neutron sources v = 60 Hz, $\Delta t_0 = (15 - 40)$ µs (poisoned & de-coupled)

<u>High-pressure</u> (SNAP): $L_1 = 15 \text{ m}$, $\Delta d/d \approx 1\%$, $\Delta \lambda \approx 0.5 - 3.65 \text{ Å or } 3.7 - 6.5 \text{ Å}$ Detector: 98-150° (hor), $\pm 34^\circ$ (ver), $P \leq 50 \text{ GPa}$, $\Delta t \sim 8 \text{ h for } 0.15 \text{ mm}^3$

Engineering (VULCAN): $L_1 = 44$ m, $\Delta d/d \approx 0.25\%$ (HR) $\approx 0.45\%$ (HI), $\Delta \lambda \approx 0.5 - 1.5$ Å (60 Hz), 0.5 - 3.5 Å (20 Hz), Beam = (2 - 12) mm², Detector: 60-150° (hor), $\pm 30^\circ$ (ver), $V_g = (8 - 20)$ mm³

Powder, HR (POWGEN): $L_1 = 60$ m, $L_2 = (1 - 6)$ m, $\Delta d/d \approx (0.1 - 1.6)$ %, Δλ ≈ 1 Å (60 Hz), Detector: 6 – 170°, $\Omega_{det} = 4$ sr

Single-crystal (TOPAZ): $L_1 = 18 \text{ m}$, $L_2 = 0.5 \text{ m}$, $\Delta d/d \approx 0.4\%$, 3D Q-space mapping $\Delta \lambda \approx 3.1 \text{ Å}$ (60 Hz), Detector: 20 - 160° (hor), ±54° (ver), $\Omega_{det} = 3 \text{ sr}$

<u>Nanoscale</u> (NOMAD): $L_1 = 19 \text{ m}, L_2 = (0.5 - 3) \text{ m}, \Delta d/d \approx 0.4\%,$ $\Delta \lambda \approx (0.1 - 3) \text{ Å (60 Hz), Detector: } 3 - 175^\circ, \Omega_{det} = 4 \text{ sr (8 sr - full)}$

<u>Macromolecular</u> (MANDI): $L_1 = 30 \text{ m}, L_2 = 0.4 \text{ m}, \Delta d/d \approx 0.3\%$, $\Delta \lambda \approx 2.2 / 4.3 \text{ Å} (60/30 \text{ Hz}), \text{Detector: } 20 - 160^\circ, \Omega_{det} = 4.1 \text{ sr}$

 $\Delta d \approx \Delta \lambda / 1.5$

Advanced detectors for TOF diffractometers

WISH (ISIS), HI + HR

 $L = 17 \text{ m}, \ \Omega_{\text{det}} \approx 3.86 \text{ sr}$

Advanced detectors for TOF diffractometers

MaNDi (SNS), Macromol. single cryst.

Powgen (SNS), HI + HR

$$L = 30 \text{ m}, \ \Omega_{\text{det}} \approx 4.1 \text{ sr}$$

$$L = 60 \text{ m}, \Omega_{\text{det}} = 4.0 \text{ sr}$$

TOF high-resolution magnetic diffractometer WISH, ISIS, UK

WISH schematic drawing

ESS pulsed neutron sources, v = 14 Hz, Δt_0 = 2860 µs

ESS parameters:

 $\Delta\lambda \approx 282/L$

Average beam power, MW	5
Peak beam power, MW	125
Proton kinetic energy, GeV	2.0
Pulse repetition rate, Hz	14
Average pulse current, mA	62.5
Macro-pulse length, μs 2	860
Number of target stations	1
Number of moderators	2
Number of instruments	16 (22
Number of neutron beam ports	42
Separation between ports degree	es 6

HR + HI powder diffractometer DREAM, ESS ($L_1 = 76 \text{ m}, \Delta \lambda \approx 3.7 \text{ Å}$)

DREAM feature: bispectral switch (cold + thermal neutrons) DREAM choppers: PC – pulse shaping, T0, BC – band control, OV – overlap = 7 ch-s DREAM costing (kEu): Design = 1970, Detector + DA = 6620, Optic = 1500, Choppers = 1120, Shielding = 2120, Infrastr. = 320, ... <u>Total</u> = 12 960 $L_1 = 76.5 \text{ m}, (\Delta t_0)_{\text{min}} = 10 \ \mu\text{s} \rightarrow \Delta d \approx 2.8 \cdot 10^{-4} \text{ Å},$

Summarized costing for DREAM

in k€	Phase F	1 (Desig Planning)	Design and Phase 2 (Final Design) Phase 3 (Procurement and Installation)		ment and m)	I Phase 4 (Beam Testing and Cold Commissioning)			то)					
	Hardware	Staff (k €)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)
Integrated Design	0	300	30	0	600	60	0	500	50	0	360	36	0	1760
Systems Integration	0	0	0	0	30	3	0	120	12	0	60	6	0	210
Detectors and Data Acquisition	0	30	3	0	30	3	6600	60	6	20	120	12	6620	240
Detector Vessel	0	0	0	0	90	9	500	60	6	20	20	2	520	170
Optical Components	0	30	3	0	30	3	1480	30	3	20	30	3	1500	120
Choppers	0	60	6	0	60	6	1100	30	3	20	30	3	1120	180
Sample Environment	0	0	0	0	30	3	420	30	3	20	30	3	440	90
Shielding	0	30	3	0	60	6	2100	60	6	20	60	6	2120	210
Instrument Specific Support Equipment	0	0	0	0	30	3	300	120	12	20	30	3	320	180
Instrument Infrastructure	0	30	3	0	30	3	300	60	6	20	30	3	320	150
Total	0	480	48	0	990	99	12800	1070	107	160	770	77	12960	3310
Grand total (no VAT)	16270													
Percentage of total cost		2.95021511985249 6.08481868469		68469576	85	.24892	44007376	5	5.71604	417947142				
k€/person-month	10													

DREAM costing: Grand total = 16,270 kEu

HR + HI powder diffractometer DREAM, ESS

(Diffraction Resolved by Energy and Angle Measurements)

Hybrid diffractometer HEIMDAL, ESS (Diffraction + SANS + Imaging, $L_1 = 167 \text{ m}, \Delta \lambda \approx 1.7 \text{ Å}, \lambda_{\min} \approx 0.6 \text{ Å}$)

Hybrid diffractometer HEIMDAL, ESS (Diffraction + SANS + Imaging, $L_1 = 167 \text{ m}, \Delta \lambda \approx 1.7 \text{ Å}, \lambda_{\min} \approx 0.6 \text{ Å}$)

HEIMDAL feature: bispectral switch (cold + thermal neutrons)HEIMDAL choppers: (pulse shaping + pulse selection + frame overlap) = 6 choppersHEIMDAL costing (kEu): Detector = 6190, Optic = 5299, Choppers = 600,Shielding = 1300, ...Total = 19 082

Hybrid diffractometer HEIMDAL, ESS (Diffraction + SANS + Imaging, $L_1 = 167 \text{ m}, \Delta \lambda \approx 1.7 \text{ Å}, \lambda_{\min} \approx 0.6 \text{ Å}$)

Flux at a sample: from 3.8x10⁶ (HR) to 2.0x10⁹ (HI)

Materials engineering diffractometer BEER, ESS (Diffraction + SANS + Imaging, $L_1 = 157$ m, $\Delta \lambda \approx 1.7$ Å, $\lambda_{min} \approx 0.6$ Å)

<u>BEER feature</u>: bispectral switch (cold + thermal neutrons)

BEER choppers: (pulse shaping + pulse selection + frame overlap) = 11 choppers **BEER costing (kEu):** Detector = 7011, Optic = 3990, Choppers = 1550, Shielding = 700 ... <u>Total</u>: Min = 19 701; Max = 21 301

Materials engineering diffractometer BEER: list of choppers)

ID	Distance	frequency	beam width/height	Туре	window width			
	[m]	[Hz]	[mm]	(*)	[deg]			
	Pulse shaping							
PSC1	6.45	168	20/80	MB	144			
PSC2	6.6	168	20/80	MB	144			
PSC3	6.9	168	20/80	MB	144			
PSC4	7.65	168	20/80	MB	144			
	Pulse multiplexing							
MCa	8.95	42 280	20/80	MB	16 x 4°, distance 22.5°			
MCb	9.00	42 280	20/80	MB	4 x 4°, distance 90°			
MCc	9.50	42 70	20/80		1 x 180°, followed by			
					7 x 4°, distance 22.5°			
	Wavelength definition							
FC1a	8.28	14/7	20/80	BB	70			
FC1b	8.32	63/70	20/80	BB	180			
FC2a	79.55	14	40/80	BB	180			
FC2b	79.59	7	40/80	BB	90			
			•					

(*) ball bearing (BB), magnetic bearing (MB)

4

3

4

PSC – pulse shaping chopper MC – multiplexing chopper FC – frame chopper

Materials engineering diffractometer BEER, ESS (Diffraction + SANS + Imaging)

Simulated neutron spectra at the sample position

Mode	flux	wavelength	resolution	<i>d</i> -range
Diffraction	1.6 x 10 ⁷	1.2 2.9 Å	$\Delta d/d \sim 0.4\%$	0.7 2.3 Å
SANS	5.6 x 10 ⁶	4.7 6.3 Å	$\Delta Q \sim 0.003 \text{ Å}^{-1}$	20 350 Å

Materials engineering diffractometer BEER, ESS (Diffraction + SANS + Imaging)

Simulated wavelength distribution of neutron flux in direct beam at the detector distance in the pulse suppression mode. The solid lines show the spectrum after phase shifting of the choppers by one source period. Brightness and time structure of the J-SNS (BL19) and ESS pulses at λ =2.85 Å. The red dashed and solid lines show the ESS full pulse and a cut made by choppers and guides of the BEER instrument in medium resolution (0.3%) mode, respectively.

Multiplexing technique at pulsed neutron sources of LPS type

 $A_{12}O_{3}$ ceramics $A_{12}O_{3}$ ceramics $A_{12}O_{3}$ ceramics $A_{12}O_{3}$ ceramics $B_{12}O_$

Wavelength Frame Multiplication (WFM)
diffractometry.SEC: $W_0 = 5200 \ \mu s, f = 8 \ Hz$ PSC: $\Delta t_0 = 139 \ \mu s, f = 200 \ Hz, L = 10.6 \ m$

Time distribution of the neutron counts at the detector in synchronous source – pulse shaping chopper operation. Black-out periods are equal to 2900 μ s. Al₂O₃ sample.

Figures from M. Russina at al. J. of Physics (2012)

Diffractometers at ESS (first stage):

Powder hybrid
 Engineering

2) Polarized, single crystal

3) Powder

5) Macromolecular, single crystal

- 1. Limited number at the 1st stage:
- 2. Bi-spectral extraction:
- 3. Very long flight path:
- 4. Detector solid angle:

5 altogether $(\lambda_1)_{max} \approx 1.2 \text{ Å}, (\lambda_2)_{max} \approx 3 \text{ Å}$ 76 / 160 m ~4 sr, $\Omega \rightarrow 4\pi (12 \text{ sr})$

- **5.** Combination of (Diffraction + SANS + IM)
- 6. Focusing on in situ, real-time mode of data acquisition
- 7. Complicated chopper system: $\sim (6 11)$ choppers of different assignments
- 8. Extremely high cost: $(12 \div 20) \cdot 10^6$ Eu
- 9. Not on the list: High-pressure, Single crystal, Texture, High-Q

Basic parameters of NEPTUN (Booklet, 2018), SNS and ESS

		<u>NEPTUN</u>	<u>SNS</u>	ESS
1.	Time-average flux density:	$(0.5 \div 12) \cdot 10^{14}$	0.1·10¹⁴	3·10 ¹⁴
2.	Half-width of fast neutrons:	(20 ÷ 200) μs	(20 ÷ 50) µs	2860 µs
3.	Pulse repetition rate:	(10 ÷ 30) Hz	60 Hz	14 Hz
4.	Time-average power:	(5 ÷ 10) MW	1 MW	5 MW
5.	Background power:	3.2 %	<1%	<1%
6.	Number of beam ports:	20 - 32	22	42

The stock set of neutron diffractometers

	Instrument	Main issue	Moderator	Resolution
1.	High-resolution	structure	60 K	High
2.	High-intensity	in situ, real-time	60 K	Medium
3.	High-pressure	micro samples	60 K	Medium
4.	Engineering	internal stresses	290 K	High
5.	Texture	multi phase	60 K	High
6.	Long period	macromolecular	30 K	Medium

For TOF-diffractometer: $(\Phi_1/\Phi_2) \cdot (\Delta t_2/\Delta t_1)$ NEPTUN / ESS = $(5 \cdot 10^{14}/3 \cdot 10^{14}) \cdot (2800/280) = 17$, if shortening of the ESS pulse to 280 µs is done without frame multiplication system

30

NEPTUN: possible options

- 1. Time-average flux density:
- 2. Half-width of fast neutrons:
- 3. Pulse repetition rate:
- 4. Moderators (at least three):
- 5. Background power:

 $(0.5 \div 12) \cdot 10^{14} \rightarrow \Phi_0 = 5 \cdot 10^{14} \text{ n/cm}^2/\text{s}$ $(20 \div 200) \ \mu\text{s} \rightarrow \Delta t_0 = 200 \ \mu\text{s}$ $(10 \div 30) \ \text{Hz} \rightarrow v = 10 \ \text{Hz}$ thermal + cold (~90 K) + very cold (~30 K)

acceptable

3.2 %

Resolution of a TOF diffractometer

 $(\Delta d/d)^2 = R_t(\lambda) + R_\theta(\theta) = (\Delta t_0/t)^2 + (\Delta \theta/tg\theta)^2$ $R_t \Rightarrow 0 \quad \text{if} \quad \Delta t_0 \Rightarrow 0 \quad \text{or} \ L \Rightarrow \infty$ $R_\theta \Rightarrow 0 \quad \text{if} \quad \Delta \theta \Rightarrow 0 \quad \text{or} \ \theta \Rightarrow \pi/2$

Resolution and shape of diffraction peaks

channel width is equal to $4 \ \mu s$) measured with HRFD.

33

HRFD resolution

34

Rietveld analysis of the HRFD data (MRIA package)

Diffraction pattern obtained with NAC-standard

Выводы по TOF-дифрактометрам

- 1. <u>Продолжается бурное развитие (усложнение)</u> систем формирования пучка нейтронов (замедлителей, нейтроноводов, прерывателей) и систем регистрации (детекторов, электроники).
- 2. <u>Новые тенденции</u>: биспектральные пучки, комбинация дифракции и МУРН, ориентация на эксперименты в реальном времени.
- 3. В конструкции дифрактометров на ESS <u>не просматриваются</u> ограничения по финансированию.
- 4. Перспективы дифракции нейтронов на источнике DNS-IV выглядят весьма <u>многообещающе</u>. По совокупности основных характеристик (интенсивности, разрешению, диапазону переданных импульсов) дифрактометры на DNS-IV <u>могут</u> превосходить дифрактометры на SNS, J-SNS и ESS!
- 5. Многообещающие перспективы будут реализованы <u>только при</u> <u>наличии</u> адекватных детекторов.