Neutron reflectometry at DNS-IV

V. Bodnarchuk FLNP JINR

<u>Outline</u>

- Neutron reflectometers (NR). Basic aspects
- NR at the IBR-2 reactor
- Trends in NR development for pulsed neutron sources
- Requirements for the sample environment
- NR at the future source DNS-IV
- Conclusions

- •Layered nanostructures
- Interlayer magnetic coupling
- Depth magnetization behaviour
- Proximity effects
- •Magnetic field penetration into the superconductive thin films. Magnetic vortex structures
- •Time-resolved domain structures
- Interfaces roughness
- Biological layers
- Magnetic liquids and electrolites
- •Langmuir-Blodgett films

Two types of measurements

Vertical and horizontal NR

NR with horizontal sample positioning

Title	Source	Country	Source type	Set-up type	Polarized neutrons	Flux at sample	q-interval	Minimal reflectivity
REFSANS	FRM II	Germany	SS	TOF	POL	~10 ⁶ cm ⁻² s ⁻¹	0.05 - 10 nm ⁻¹	5x10 ⁻⁷
N-REX	FRM II	Germany	SS	SS	POL	3x10 ⁶ cm ⁻² s ⁻¹	0.01 - 1.5 nm ⁻¹	1x10 ⁻⁷
FIGARO	ILL	France	SS	TOF	POL	~10 ⁸ cm ⁻² s ⁻¹	0.05 - 4 nm ⁻¹	1×10 ⁻⁶
AMOR	SINQ	Switzerland	SS	TOF	non-POL	1x10 ⁸ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁵
Platypus	OPAL	Australia	SS	TOF	POL	1x10 ⁹ cm ⁻² s ⁻¹	0.05 - 5 nm ⁻¹	1x10 ⁻⁷
LR	SNS	USA	Pulsed	TOF	non-POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 2 nm ⁻¹	1x10 ⁻⁶
GRAINS	IBR-2	Russia	Pulsed	TOF	POL	2x10 ⁶ cm ⁻² s ⁻¹	0.05 - 1 nm ⁻¹	1x10 ⁻⁵
Inter	ISIS	UK	Pulsed	TOF	non-POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁵
PolRef	ISIS	UK	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁶
OffSpec	ISIS	UK	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	First experim.
B16	J-PARC	Japan	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	First experim.
REF	CARR	China	SS	SS	non-POL	~10 ⁷ cm ⁻² s ⁻¹	0.03 - 0.5 nm ⁻¹	Under constr.

Resolution factor

$\delta\lambda/\lambda \sim \tau/L$,

τ - pulse width, L- flight path mod-det

NR at the IBR-2 reactor.

REMUR 0÷50 • 0÷50 18800 C3 D1 (0÷150)x180 40x100 D2 PSD SF 2 APF SF AZ PR 4200 Ø200 Ø200 10x100 8100 500 4450 9500 20500 200x100mm 26200 4900 29000

0÷160

0÷160

REFLEX

Instrument	Plane of scattering	Polarization	Flux at the sample position	Q-range	λ - range, Å
REMUR	Н	+	3 x10 ⁵ c ⁻¹ cm ⁻²	0.05 – 7 нм ⁻¹	0.9 ÷ 15
REFLEX	Н	+	10 ⁵ c ⁻¹ cm ⁻²	0.01 – 1.3 нм ⁻¹	1.4 ÷ 10
GRAINS	V	(+)	2 x10 ⁶ c ⁻¹ cm ⁻²	0.05 – 3 нм ⁻¹	0.5 ÷ 10

Background at the IBR-2 reactor

Background at the IBR-2 reactor

Frame overlap problem

The repetition rate (10 Hz for DNS-IV) and the choice of instrument length defines the wavelength band of the instrument

Trends in NR development.

ESS. FREIA. Fast Reflectometer for Extended Interfacial Analysis. Fast Kinetic Studies to Reflectometry Hanna Wacklin, Anette Vickery, Hanna Wacklin, ESS Instrument Construction Proposal, 2013

Trends in NR development.

HERITAGE project for ESS. Focusing neutron guide and GISANS

S. Mattauch et al. Nuclear Instruments and Methods in Physics Research A 841 (2017) 34–46.

Sample environment for NR

- Low temperatures
- High temperatures
- Magnetic field
- Thermostat (temperature, humidity, pressure)
- X-Ray option
- MBE in-situ chamber

1.5 ÷ 300 K 300 ÷ 900/1900 K 10 ÷ 15 T

Detectors and DAQ

$PSD \ area \sim 500 \ x \ 500 \ mm^2$

Resolution $\sim 2mm \ x \ 2 \ mm$

Polarization

NEPTUN: requirements

1.	Time-average flux density:	$(0.5 \div 12) \cdot 10^{14}$	\rightarrow	$\Phi_0 = 5 \cdot 10^{14} \text{ n/cm}^2/\text{s}$
2.	Half-width of fast neutrons:	(20 ÷ 200) μs	\rightarrow	$\Delta t_0 = 200 \ \mu s$
3.	Pulse repetition rate:	(10 ÷ 30) Hz	\rightarrow	$\mathbf{v} = 10 \ \mathbf{Hz}$
4.	Moderators (at least three):	<u>VC</u> , C, Th	\rightarrow	very cold (~30 K)
5.	Background power:	3.2 %		
6.	Number of beam ports	20 - 32		

	<u>SNS</u>	ESS
1. Time-average flux density:	0.1·10¹⁴	3·10 ¹⁴
2. Half-width of fast neutrons:	(20 ÷ 50) μs	2860 μs
3. Pulse repetition rate:	60 Hz	14 Hz
4. Time-average power:	1 MW	5 MW
5. Background power:	<1%	<1%
6. Number of beam ports:	22	42

Required minimum set of NR at the future DNS-IV neutron source

No.	Instrument	Main issue	Moderator
1	General purpose Horizontal scattering plane	Various resolution, ∆q/q - 1÷10% polarized neutrons, wide angle analyzer, focusing elements and multi-beam collimation, multi-chopper background suppression Off-specular, GISANS, PSD 0.5 x 0.5 m ² , extended sample environment (<u>combinations with other techniques</u> , in-situ studies) Real-Time	30 K
2	Liquid reflectometer Vertical scattering plane	Various resolution, ∆q/q - 1÷10% polarized neutrons, wide angle analyzer, focusing elements and multi-beam collimation, multi-chopper background suppression Off-specular, GISANS, PSD 0.5 x 0.5 m ² , extended sample environment for hard/liquid samples (<u>combinations with other techniques</u> , in-situ studies) Real-Time	30 K
3	Reflectometer for methodical studies	Testing of new elements and methodical ideas	

Conclusions

Basing on the trends in the science development in the world and our own experience one have to make a conclusions:

- Two type of NR are demanded: horizontal and vertical planes scattering
- Multi-beam measurement to avoid excess intensity losses
- Instrument flexibility: wide range of measurement modes and parameters (polarized/unpolarized; focusing/collimation ets.)
- > In-situ sample characterization and control
- **>** Real-time measurements
- Wide spectrum of sample environment equipment
- Background suppression at the pulsed reactor demands a special approach
- There are competitive reflectometers can be realized at the future source DNS-IV by the set of basic parameters: intensity, resolution, Q-range.

Thank you for your attention

Special thanks:

M. Avdeev A. loffe V. Sadilov