

NEUTRONS in space: danger for space missions

Mikhail Panasyuk Moscow state University

NEUTRONS

- The Sun (nuclear reactions)
- t~ 15 minutes!
- The Earth's atmosphere (nuclear reactions)
- The spacecraft's body!
- Planet's soil
- Planet's atmospheres

Космическая радиация вблизи Земли

Space Radiation Impact

Space Radiation Impact

The Earth's Radiation Belts

LEO, 400 km (ISS)

Inner zone
- p up to 100' MeV
- e up to several MeV

Outer zone - p up to ~ MeV - e to several MeV ~7Re

Low altitudes (LEO)

South Atlantic Anomaly

The Earth's magnetic field

South Atlantic Anomaly and ISS trajectory

Altitude

MIR Space Station Radiation Doses

Since 70', the radiation monitoring system has been operating on board the Space stations, designed and manufactured at the Moscow State University

Inner Radiation Belt Solar Cycle Dependence

Inner Radiation Belt Solar Cycle Dependence.

Proton flux

Atmospheric density

Importance of Solar Cycles Predictions

Near –Earth's radiation environment become more dangerous (increasing of GCR fluxes & atmosphere cooling) ???

Shuttle: 28° inclination

ISS: 51,2° inclination

Daily "MIR" Orbits: h=400km, inclination = 51 deg

SAA: magnetic field secular variations

- Magnetic field become weaker (at h = const)

- SAA moving to the west

Neutron Environment in the Near-Earth's Space

LEO Neutron Environment

Solar neutrons

GCR & RB protons

.....

Albedo neutrons Local neutrons

Neutron dose equivalent (µSv/h)

Neutron dose equivalent (Goka et al) (From March 23 to July 7, All orbit)

"Neutron's response" of solar flares

«Нейтронный отклик» солнечных вспышек

Neutron dose equivalent(µSv/h)

We have investigated the neutron dose equivalent inside the ISS on the influence of solar flare.

Secondary protons & neutrons at LEO

Local neutrons generation vs S/C mass

Semiconductor chip

Galactic Cosmic Rays

Galactic cosmic rays

Cosmic Rays Models

The main goal: prediction

SEP/GCR composition

Элементный состав заряженных частиц ГКЛ и СКЛ

GCR

Галактические космические лучи (экспериментальные данные)

«Современные проблемы космической радиобиологии и астробиологии»

Дубна, 17-19 Октября 2018

2. GCR spectra according to SINP MSU model of 2017

Kuznetsov, N.V., Popova, H., Panasyuk, M.I. *Empirical model of long-time variations of galactic cosmic ray particle fluxes.* J. Geophys. Res. Space Phys. **122** (2017) 1463-1472.

GCR projectile	1 ₁ H	⁴ ₂ He	⁹ ₄Be	¹⁶ 8O	²⁸ 14Si	⁵⁶ 26 Fe
Presents nuclei	$^{1}{}_{1}H$	⁴ ₂ He	Li, Be, B	C - Ne	Na - Ar	K - Ni
Weight factor	1	1	7.0	2.16	2.84	1.77

Problems of GCR modelling

GCR Temporal Variations

Solar Energetic Particles

SEP's acceleration

Flare Acceleration 3He-rich, Fe-rich Narrow populated area Impulsive injection

•CME-drive shock acceleration

- 'nominal' composition (≠ SW)
- Broad distribution
- Evolving conditions

•CME-drive shock acceleration

SEP's transport

SEP's interplanetary transport

The key problems of SEP's modelling

What SEP's characteristics have we to know

for the adequate model's development?

SEP's Temporal/Energy Parameters

SEP's energy spectra

The shape of SEP's spectra (exponential or power low)?

SEP

Солнечные космические лучи (экспериментальные данные)

(San Francisco, 13-18 December)

SEP and Solar Activity

SEP's energy spectra

 Distribution function of fluence of protons with E more than 30 MeV

RADIATION EFFECT FROM AUGUST 1972 SOLAR FLARE

GCR&SEP συνεργία (synergy): importance for long-duration space flights

Radiation Doses for the Long- Time Interplanetary Flights

SEP/GCR in open space and under shielding

Радиационные условия в МПП

Сравнение модельных энергетических спектров ГКЛ и СКЛ

«Современные проблемы космической радиобиологии и астробиологии»

Дубна, 17-19 Октября 2018

SEP/GCR absorbed doses

Характеристики радиационного воздействия

Поглощенная доза (сравнение вклада от потоков ГКЛ и СКЛ)

SEP & GCR doses

 The value of SEP annual doses expected by the particles of the SEP (probability = 1%), exceed the same values for GCR particles in the whole considered range of the thickness of the shielding during high solar activity, and for the thickness is less than 10 g/cm2 during solar activity minimum.

Albedo particles: neutrons, etc

Neutrons generation in regolith (under the shielding)

Тоток, 1/(см2 с МэВ)

Medium-tissue equivalent dose (H) of GCR, SEP and neutrons

 The contribution of neutrons to the H value is much less than the contribution of charged particles at the thickness of the aluminum screen less than ~30 g / cm2 and is comparable at a greater thickness of the shielding;

Neutrons of Mars and Moon

Radiation risk for long-duration habitation missions

The Moon habituation orbital

The Moon habituation facility

The Mars habituation facility

The Moon base

MSU model for 10 г/см-2

Magnetic shielding for spacecraft to Mars

The main conclusion:

- Time of mission – the effective shielding against radiation.

- The values of radiation doses of the secondary neutron component of cosmic radiation are large enough in comparison with the doses from the charged component and they cannot be neglected in the assessment of the radiation risk of space missions.

BACK UP

SOLAR ACTIVITY

• **The key** parameter for every model of radiation environment!

Absorbed dose rate in water sphere at GCR irradiation. Contributions of all projectiles p, He4, Be9, O16, Si28 and Fe56 are summed taking into account the weight of each projectile. **Plastic thickness 15 g/cm²**.

Dose rate from all GCR projectiles			
Screen material		AI 27g/cm ²	Plastic 15g/cm ²
GCR proj.	Weight	mGy/day	mGy/day
H1	1	2.64E-01	2.55E-01
He4	1	8.92E-02	8.74E-02
Be9	7.0	2.52E-03	2.45E-03
O16	2.16	2.47E-02	2.69E-02
Si28	2.84	8.58E-03	9.57E-03
Fe56	1.77	7.33E-03	7.58E-03
Summed dose rate		3.96E-01	3.89E-01
Contribution of p, d, α , π to dose rate for GCR H1			
Screen material		AI 27g/cm2	Plastic 15g/cm2
Contribution from:		mGy/day	mGy/day
Total		2.64E-01	2.55E-01
р		2.22E-01	2.19E-01
d		5.84E-03	4.71E-03
α		2.58E-03	2.26E-03
π+/-		2.60E-02	2.22E-02

Importance of Solar Cycles Predictions

GCR spectra under the shielding

Albedo neutrons spectra under the shielding

Calculated and experimental fluences of SEP protons

Оценка радиационного риска для человека на Луне выполнена для разной продолжительности лунных экспедиций и с учетом нахождения на поверхности Луны защитного экрана.
Среднетканевая эквивалентная доза (H) от ГКЛ, СКЛ и нейтронов

- Вклад нейтронов в значение Н значительно меньше вклада заряженных частиц при толщине алюминиевого экрана менее ~30 г/см2 и сравним при большей толщине экрана;
- значение H_{СКЛ}, ожидаемое за год от частиц СКЛ (r = 1%), выше значения H_{ГКЛ}, создаваемое частицами ГКЛ во всем диапазоне рассмотренных толщин экрана во время максимума солнечной активности, и при толщине экрана менее 10 г/см2 - во время минимума солнечной активности.

Н.В.Кузнецов и др., в печати

SEP and Solar Activity

GCR/ SINP MSU model

International standard since.... ~ 10 years

Модели устанавливают изотропные потоки частиц в межпланетном пространстве в районе орбиты Земли (1 а.е.). Они учитывают зависимость потоков частиц от солнечной активности, которая задается среднемесячными числами Вольфа W.

Galactic Cosmic Rays Modulation

SEP's Largest Events (GLE)

