Responsible of spectrometer:

Kuklin Aleksander Ivanovich
Moscow Region, Dubna, Joliot Curie, 6
Phone, fax. +7 (49621) 6-74-17
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
 

Small-Angle Scattering Group Staff

 

Information could be obtained by SANS

  • Sizes, spatial correlations and shapes of particles, agglomerates, pores and fractals in crystalline and in amorphous states as well as in solution on a length scale ranging from 1 nm up to several hundred nanometers
  • Phase transitions
  • Degree of polydispersity
  • Aggregation numbers
  • Molecular weight
  • Geometric peculiarities

 

Description of the method

 

Information could be obtained by SANS

  • Sizes, spatial correlations and shapes of particles, agglomerates, pores and fractals in crystalline and in amorphous states as well as in solution on a length scale ranging from 1 nm up to several hundred nanometers
  • Phase transitions
  • Degree of polydispersity
  • Aggregation numbers
  • Molecular weight
  • Geometric peculiarities

 

Special methods

Contrast Variation Method
– Determination of object density
– Investigation of system homogeneity

Label Method
– Analysis of density distribution in studied object

Literature on the method:

 

Guinier, A. and Fournet, G., Small-Angle Scattering of X-Rays // John Wiley & Sons Inc., New York 1955.
Glatter, O. and Kratky, O., Small-Angle X-Ray Scattering//Academic Press, London, 1982.
Feigin, L. A., and D. I. Svergun. 1987. Structure Analysis by Small-Angle. X-Ray and Neutron Scattering. New York: Plenum Press. pp 33, 1988.
Бекренев А.Н., Миркин Л.И. Малоугловая рентгенография деформации и разрушения материалов // М.: Изд-во МГУ, 1991. - 246 с.
Higgins Julia S. and Benoit C. Polymers and Neutron Scattering// Clarendon press, Oxford, 1994.
Ю.М.Останевич, И.Н.Сердюк. Нейтронографические исследования структуры биологических макромолекул. Успехи физических наук, том 137, вып.1, 1982 г.
International Conference on Small-Angle Scattering, Journal of Applied Crystallography, Vol.21. Part 6. December 1988 (pp.581-1009).

 

General characteristics

 

Main parameters of YuMO instrument

Parameters  
Flux on the sample (thermal neutrons) 107– 4x107 n/(s cm2) [1]
Used wavelength  0.5 Å to 8 Å   #
Q-range 7x10-3 – 0.5 Å-1
Dynamic Q-range qmax/qmin up to 100
Specific features Two detectors system [2,3], central hole detectors
Size range of object      * 500 – 10 Å
Intensity (absolute units -minimal levels) 0.01 cm-1
Calibration standard Vanadium during the experiment [4]
Size of beam on the sample 14 mm diameter
Collimation system Axial 
Detectors He3 -fulfiled, home made preparation, 8 independent wires [5]
Detector (direct beam) 6Li-convertor (home made preparation) 
Condition of sample In special box in air
Q-resolution low, 5-20%
Temperature range 4oC - + 70oC (standard hellma cuvettes)
-20oC - + 130oC (requires special sample holders)
Number of computer controlled samples  25            ***
Background level 0.03 – 0.2 cm-1
Mean time of measurements for one sample 1 h          + 
Frequency of pulse repetition 5 Hz
Electronic system WINDOWS 10
The instrument control software complex SONIX [6]
Controlling parameters  Starts (time of experiments), power, vandium standard position , samples position, samples box temperature, vacuum in detectors tube.
Data treatment SAS, Fitter [7-9]

# - without cold moderator

@ - can be easy changed with collimators with diameters: 8 - 20 mm

* - only for estimation (Radii of giration from 200 Å - to 10 Å  -  Angstroem)

^ - needs special holders for the low and high temperatures measurements. Please contact the your local contact.

** - in special box, using nonstandard devices

+ - for estimation only

*** - Simultaneously in standard Hellma cell or with sample size < 20 mm* 50mm

 

References:

[1] Kuklin A.I. , Bobarikina G.N., Bogdzel A.A., Godeliy V.I., Islamov A.Kh., Konovalov V.Yu., Rogov A.D., Florek M. Measurements and simulation by Monte-Carlo method spectrum of neutron beam. Parameters of YuMO spectrometer at 4 line beam on IBR-2 reactor, Preprint JINR, P13-2002-249 (russian)
[2] A.I.Kuklin, A.Kh.Islamov, and V.I.Gordeliy. Two-detector System for Small-Angle Neutron Scattering Instrument, Neutron News, 2005, vol. 16, 3, pp.16-18.[
3] Kuklin A.I., Islamov A.Kh., Kovalev Yu.S., Utrobin P.K., V.I. Gordeliy. Optimization two-detector system small-angle neutron spectrometer YuMO for nanoobject investigation. Surface. 2006, ?6, pp.74-83 (Russian). 
[4] Yurii M.Ostanevich, Time-of-flight small-angle scattering spectrometers on pulsed neutron sources, J.Makromol.Chem., macromol.Symp.15, 91-103 (1988)
[5] The copyright certificateN 690959 14.06.1979, Ananiev B.N., Ostanevich Yu.M., Pikelner E.Ya.
[6] A. S. Kirilov, E. I. Litvinenko, N. V. Astakhova, S. M. Murashkevich, T. B. Petukhova, V. E. Yudin, V. I. Gordelii, A. Kh. Islamov, and A. I. Kuklin, Evolution of the SONIX Software Package for the YuMO Spectrometer at the IBR-2 Reactor, Instruments and Experimental Techniques (Pribory i tekhnika eksperimenta) 3, 2004, Volume 47 (6 issues),volume 47, 334-336.
[7] A.G.Soloviev et al. SAS. The Package for Small-Angle Neutron Scattering Data Treatment Version 2.4. Long Write-Up and User’s Guide. Communication of JINR P10-2003-86, Dubna, 2003.
[8] A.G.Soloviev, A.V.Stadnik, A.H.Islamov and A.I.Kuklin. Fitter. The package for fitting a chosen theoretical multi-parameter function through a set of data points. Application to experimental data of the YuMO spectrometer. Version 2.1.0. Long Write-Up and User's Guide''. Communication of JINR E10-2008-2, Dubna, 2008.
[9] A.G.Soloviev, E.I. Litvinenko, G.A.Ososkov, A.Kh.Islamov, A.I.Kuklin, Application of wavelet analysis to data treatment for small-angle neutron scattering, Nuclear Inst. and Methods in Physics Research, A. 502/2-3 (2003) 498-500.

 

Magnetic system for SANS spectrometer YuMO (2002-2004)

 

Project leaders: M. Balasoiu, A. Kuklin

Key project participants: Kutuzov S.A., Smirnov A., Kirilov A.S., Islamov A.K.

 

The main parameters of the magnetic installation:

 

The magnetic field in the gap of 25 mm - 2,5 T
Inhomogeneity at the same time in 1 cm3 - 0,6%

 

The magnetic field in the gap of 100 mm - 0,85 T
Inhomogeneity at the same time in 1 cm3- 0,15%

 

Dendrimer Research

 

A new class of polymers, first synthesized in the mid 80's, attracts the attention of researchers because of the unusual spatial architecture. Dendrimers have a regular spatial structure and a large number of functional groups. Current status of the question of the spatial structure and density distribution within the dendrimer macromolecules is largely debatable.

The method of small-angle scattering for solving the structure of dendrimers is unique - it allows you to receive full information about the structure of these nano-objects. For example, using small angle neutron scattering (SANS) with contrast variation can determine the density distribution inside the dendrimer. In this investigations the unique abilities of the spectrometer YuMO are used to answer the many questions posed above.

The results are presented in 7 works (over 40 pages in journal publications), 6 of them in various leading foreign and Russian journals [1,3,5-8,10]. Using small-angle neutron scattering was decisive in obtaining new scientific results.

 

In these investigations a fundamentally new results have been received:

 

For the first time the existence of open, solvent accessible internal cavities in the effective amount of dendrimer has been demonstrated, and their volume fraction’s been calculated.

It’s proved that the terminal groups of dendrimers are localized at the surface layer. The experimental data’s allowed to explain for the first time why dendrimers appear to be penetrated and nonpenetrated for the solvent in the same time.

Application of advanced mathematical methods of small-angle scattering data processing allowed us to obtain not only size but also to restore for the first time ab initio shape of dendrimers of various generations for three-and four-functional dendrimers.

Thus, in current investigation a unique information of a fundamental nature’s been obtained, which is the basis for understanding the physical and chemical properties of these nanoobjects. It’s essential for purposeful synthesis of dendrimers with specified physical and chemical properties, including practical applications.

 

Modernization of the YUMO instrument:

 

Improvement of the YuMO instrument was going in accordance with the developed and submitted for the consideration project and plan. 
Main goals of this work are increasing of q-range, shortening of data acquisition time and optimisation of the instrument to new conditions. The changes are concerned almost all basic elements of the YuMO: detector, data acquisition, collimation systems as well as sample environment conditions.

 

Publications

 

Polymers:

 

[1] А.В. Рогачев, А.Ю. Черный, А.Н. Озерин, В.И. Горделий, А.И. Куклин. Модель шаровых секторов для описания экспериментальных данных малоуглового рассеяния нейтронов на дендримерах. Кристаллография, 2007, том 52, ?3, с. 546–550.
[2] Vyacheslav S. Molchanov, Olga E. Philippova, and Alexei R. Khokhlov, Yuri A. Kovalev and Alexander I. Kuklin. Self-Assembled Networks Highly Responsive to Hydrocarbons, Langmuir 2007, 23, 105-111
[3] A. N. Ozerin, D. I. Svergun, V. V. Volkov, A. I. Kuklin, V. I. Gordeliy, A. Kh. Islamov, L. A. Ozerina and D. S. Zavorotnyuk. The spatial structure of dendritic macromolecules, J. Appl. Cryst. (2005). 38, 996–1003.
[4] A. S. Andreeva, A. I. Fomenkov, A. Kh. Islamov, A. I. Kuklin, O. E. Filippova, and A. R. Khokhlov, Hydrophobic Aggregation in a Hydrophobized Polyacrylic Acid Gel Subjected to Microphase Separation, Polymer Science, Ser. A, Vol. 47, No. 2, 2005, pp. 194–201. Translated from Vysokomolekulyarnye Soedineniya, Ser. A, Vol. 47, No. 2, 2005, pp. 338–347.
[5] A. N. Ozerin, A. M. Muzafarov, A. I. Kuklin, A. Kh. Islamov, V. I. Gordelyi, G. M. Ignat’eva, V. D. Myakushev, L. A. Ozerina, and E. A. Tatarinova, Determination of the Shape of Dendrimer Macromolecules in Solutions from Small-Angle Neutron Scattering Data, Doklady Chemistry, Vol. 395, Part 2, 2004, pp. 59–62. Translated from Doklady Akademii Nauk, Vol. 395, No. 4, 2004, pp. 487–490
[6] Alexander I.Kuklin, Alexander N.Ozerin, Akhmed Kh.Islamov, Aziz M.Muzafarov, Valentin I.Gordeliy, Eugeniy A.Rebrov, Galina M.Ignat'eva, Elena A.Tatarinova, Ruslan I.Mukhamedzyanov, Lyudmila A.Ozerina and Eugeniy Yu.Sharipov, Complementarity of small-angle neutron and X-ray scattering methods for the quantitative structural and dynamical specification of dendritic macromolecules, J. Appl.Cryst. (2003).36, 679-683
[7] Alexander N. Ozerin, Aziz M.Muzafarov, Valentin I. Gordeliy, Alexander I. Kuklin, Galina M. Ignat’eva, Mikhail A.Krykin, Lyudmila A.Ozerina, Natalia A. Shumilkina, Akhmed Kh.Islamov, Eugene Yu. Sharipov, Ruslan I. Mukhamedzyanov. Structure and Dynamics of Dendritic Macromolecules. Macromol. Symp. 195, 171-178 (2003)
[8]. Alexander I.Kuklin, Alexander N.Ozerin, Akhmed Kh.Islamov, Aziz M.Muzafarov, Valentin I.Gordeliy, Eugeniy A.Rebrov, Galina M.Ignat'eva, Elena A.Tatarinova, Ruslan I.Mukhamedzyanov, Lyudmila A.Ozerina and Eugeniy Yu.Sharipov, Complementarity of small-angle neutron and X-ray scattering methods for the quantitative structural and dynamical specification of dendritic macromolecules, J. Appl.Cryst. (2003).36, 679-683
[9] Yu. D. Zaroslov, V. I. Gordeliy, A. I. Kuklin, A. H. Islamov, O. E. Philippova, A. R. Khokhlov and G. Wegner Self-Assembly of Polyelectrolyte Rods in Polymer Gel and in Solution: Small-Angle Neutron Scattering Study Macromolecules 2002, 35, 4466-4471
[10] Kuklin, A. I., Ignat’eva, G. M., Ozerina, L. A., Islamov, A. Kh., Mukhamedzyanov, R. I., Shumilkina, N. A., Myakushev, V. D., Sharipov, E. Yu., Gordeliy, V. I., Muzafarov, A. M. & Ozerin, A. N. (2002). Polym. Sci. A44. N12, c.1-10
[11] J.Plestil, H.Pospisil, A.I.Kuklin, R.Cubitt, SANS study of three-layer micellar particles, Appl.Phys.A 74 S405-S407 (2002).
[12]. Olga E.Philippova, Assol S.Andreeva, Alexei R.Khokhlov, Akhmed Kh.Islamov, Alexander I.Kuklin, and Valentin I.Gordeliy, Charge-Induced Microphase Separation in Polyelectrolyte Hydrogels with Associating Hydrophobic Side Chains: Small-Angle Neutron Scattering Study, Langmuir 2003, 19, 7240-7248
[13]. Yu. D. Zaroslov, V. I Gordeliy, A. I. Kuklin, A. H. Islamov, O. E. Philippova, A. R. Khokhlov and G. Wegner Self-Assembly of Polyelectrolyte Rods in Polymer Gel and in Solution: Small-Angle Neutron Scattering Study Macromolecules 2002, 35, 4466-4471
[14]. J.Plestil, H.Pospisil, A.Sikora, I.Krakovsky and A.I.Kuklin, Small-angle neutron scattering and differntial scanning calorimetry dtudy of associative behaviour of branched poly(ethylen oxide)/poly(propylen oxide) copolymer in aqueous solution, J.Appl.Cryst.(2003).36, 970-975

 

Biological objects:

 

[15] Michael Petukhov, Dmitry Lebedev, Valery Shalguev, Akhmed Islamov, Aleksandr Kuklin, Vladislav Lanzov, and Vladimir Isaev-Ivanov. Conformational Flexibility of RecA Protein Filament:Transitions between Compressed and Stretched States. PROTEINS: Structure, Function, and Bioinformatics 65:296–304 (2006).
[16] T.N. Murugova, V.I. Gordeliy, A. Kh. Islamov, Yu.S. Kovalev, A. I. Kuklin, A.D. Vinogradov, L. S. Yaguzhinsky, Structure of membrane of submitochondrial particles studied by small angle neutron scattering, Materials structure in Chemistry, Biology, Physics and Technology, Czech and Slovak Crystallographic Association. Materials Structure, vol.13, no 2 (2006).
[17] R. Efremov, G. Shiryaeva, G. Bueldt, A. Islamov, A. Kuklin, L.Yaguzhinsky, G. Fragneto-Cusani, V.Gordeliy. SANS investigations of the lipidic cubic phase behaviour in course of bacteriorhodopsin crystallization, Journal of Crystal Growth 275 (2005) e1453–e1459.
[18] D.V. Lebedev, M.V. Filatov, A.I. Kuklin, A.Kh. Islamov, E. Kentzinger, R. Pantina, B.P. Toperverg, V.V. Isaev-Ivanov, Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties, FEBS Letters 579 (2005) 1465-1468.
[19]. Daniela Uhrikova, Norbert Kucerka, Akhmed Islamov, Alexander Kuklin, Valentin Gordeliy, Pavol Balgavy : Small angle neutron scattering study of the lipid bilayer thickness in unilamellar dioleoylphosphatidylcholine liposomes prepared by the cholate dilution method: n decane effect. Biochim. Biophys. Acta , 78411 (2003)1-4.
[20] J.Gallova, D.Uhrikova, A.Islamov, A.Kuklin and P.Balgavy, Effect of Cholesterol on the Bilayer Thickness in Unilamellar Extruded DLPC and DOPC Liposomes: SANS Contrast Variation Study, Gen.Physiol.Biophys.(2004)23, 113-128.
[21] D.V.Lebedev, D.M.Baitin, A.Kh.Islamov, A.I.Kuklin, V.Kh.Shalguev, V.A.Lazov, V.V.Isaev-Ivanov. Analytic model for determination of parameters of helical structures in solution by small angle scattering: comparison of RecA structures by SANS. FEBS Letters 537 (2003) 182-186
[22] P. Balgavý, D.Uhríková, J. Karlovska, M. Dubnichkova, N. Kučerka, F. Devinsky, I. Lacko, J. Cizmarik, K. Lohner, G. Degovocs, G. Rapp, S. Yaradaykin, M. Kiselev, A. Islamov, V. Gordeliy “X-ray Diffraction and Neutron Scattering Studies of Amphiphilic- Lipid Bilayer Organization” Cellular and Mol. Biol. Letters 6 (2001) 283-290.

 

Nanoparticles and material science:

 

[23] I.Ion, A.M.Bondar, Yu.Kovalev, C.Banciu, I.Pasuk, A.Kuklin. The influence of nanocarbon-coated iron on the mesophase. Поверхность. 2006, ?6, с.84-88.
[24] E.B.Dokukin, A.I.Beskrovnyi, A.I.Kuklin, Yu.S.Kovalev, M.E.Dokukin, N.S.Perov, Chong-Oh Kim, and CheolGi Kim, Neutron-scattering investigation of Co- and Fe-based amorphous alloys, phys.stat.sol.(b) 241, No.7, 1689-1692 (2004).
[25] Кнотько А.В., Гаршев А.В., Макарова М.В., Путляев В.И., Третьяков Ю.Д., Куклин А.И. Фазовый распад в Pr - содержащих твердых растворах на основе сверхпроводника Bi2Sr2CaCu2O8. Материаловедение, 2004, N 2, стр. 2 - 8.
[26] M. Balasoiu, M.V. Avdeev, A.I. Kuklin, V.L. Aksenov, D. Bica, L. Vekas, D. Hasegan, Gy. Torok, L. Rosta, V. Garamus, J.Kohlbrecher. Structural studies of ferrofluids by small-angle neutron scattering, Magnetohydrodynamics Vol. 40 (2004), No. 4, pp. 359–368.
[27].B.Grabcev, M.Balasoiu, D.Bica and A.I.Kuklin. "Determination of the Structure of magnetite particles in a ferrofluid by small angle neutron scattering method." J. of Magnetohydodynamics, 1994, v.30,p.156-162.

 

Colloidal solutions and surfactants:

 

[28] A. Islamov, C.R. Haramagatti, H. Gibhardt, A. Kuklin, G. Eckold, Pressure-induced phase transitions in micellar solutions, Physica B 385–386 (2006) 791–794.
[29] Э.М.Косачева, Д.Б.Кудрявцев, Р.Ф.Бакеева, А.И.Куклин, А.Х.Исламов, Л.А.Кудрявцева, В.Ф.Сопин, А.И.Коновалов. Агрегация в водных системах на основе разветвленного полиэтиленимина и катионных поверхностно-активных веществ. Коллоидный журнал.2006, том.68, ?6, с.784-791.
[30] G.N. Fedotov, Yu.D. Tret’yakov, E.I. Pakhomov, A.I. Kuklin, A.Kh. Islamov, T.N. Pochatkova, Effect of the Soil Water Content on the Fractal Properties of Soil Colloids, Doklady Akademii Nauk, 2006, Vol. 409, No. 2, pp. 199–201. Eng.: ISSN 0012-5008, Doklady Chemistry, 2006, Vol. 409, Part 1, pp. 117–119. © Pleiades Publishing, Inc., 2006.
[31] G.N. Fedotov, Yu.D. Tret’yakov, E.I. Pakhomov, A.I. Kuklin, A.Kh. Islamov, Temperature Effect on the Evolution of Soil Gels, Doklady Akademii Nauk, 2006, Vol. 407, No. 6, pp. 782–784. Eng.: ISSN 0012-5008, Doklady Chemistry, 2006, Vol. 407, Part 2, pp. 51–53. © Pleiades Publishing, Inc., 2006.
[32] G.N. Fedotov, Yu.D. Tret’yakov, E.I. Pakhomov, A.I. Kuklin, A.Kh. Islamov, Inhomogeneity of Soil Gels, Doklady Akademii Nauk, 2006, Vol. 408, No. 2, pp. 207–210. Eng.: ISSN 0012-5008, Doklady Chemistry, 2006, Vol. 408, Part 1, pp. 73–75. © Pleiades Publishing, Inc., 2006.
[33] C.R.Haramagatti, A.Islamov, H.Gibhardt, N.Gorski, A.Kuklin and G.Eckold. Pressure induced phase transitions of TTAB-micellar solutions studied by SANS and Raman spectroscopy. Phys.Chem.Phys., 2006, 8, 994-1000.
[34] Андреева А.С., Фоменков А.И., Исламов А.Х., Куклин А.И., Филиппова О.Е., Хохлов А.Р. “Гидрофобная агрегация в микрофазно расслоенном геле гидрофобномодифицированной полиакриловой кислоты”, Высокомолек. соед., Сер. А. 2005, т.47, ?2, с. 338-347.
[35] Г.Н.Федотов., Ю.Д.Третьяков., В.К.Иванов., А.И.Куклин, А.Х.Исламов А.Х., В.И.Путляев, А.В.Гаршев, Е.И.Пахомов. Фрактальные структуры коллоидных образований в почвах. Доклады Академии Наук, 2005, том 404, ?5 , с.638-641.
[36] Г.Н.Федотов, Ю.Д. Третьяков, В.К.Иванов, А.И.Куклин, Е.И.Пахомов, А.Х. Исламов, Т.Н.Початкова. Фрактальные коллоидные структуры в почвах различной зональности. Доклады Академии Наук, 2005, том 405, ?3,с.351-354.
[37] Jaroslav Kriz, Josef Plestil, Herman Pospýsil, Petr Kadlec, Cestmýr Konak, Laszlo Almasy, and Alexander I. Kuklin. 1H NMR and Small-Angle Neutron Scattering Investigation of the Structure and Solubilization Behavior ofThree-Layer Nanoparticles, 11255 Langmuir 2004, 20, 11255-11263
[38]. B.Grabcev, M.Balasoiu, A.Tarziu, A.I.Kuklin and D.Bica, Journal of Magnetism and Magnetic Materials 201(1999), 140-143.